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Summary. The Morse inequalities linking the critical points of a potential 
function on the whole configuration space and its restrictions to either planar or 
linear configurations are derived from the Morse theory in its equivariant form. 
Brute potential functions arising from standard models of quantum chemistry 
need eventually morsification which can be achieved without altering the main 
chemical significances of the potential. Illustrative applications follow in the case 
of magnesium clusters. 
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1. Introduction 

A consequence of the Born-Oppenheimer approximation [1], the concept of 
potential energy hypersurface is a fundamental one in chemistry. The term 
"hypersurface" is to be understood as the graph of some potential function (the 
energy) of the 3N coordinates of the N nuclei of a molecular system. In the 
absence of external field, the energy depends only on the interatomic distances 
and its invariant under a translation/rotation/reflexion of the system as a whole. 
In spite of the energy arising numerically from various models (analytical form, 
SCF + CI, effective hamiltonian, etc.) we can assume conveniently the potential 
function to be an eigenvalue (usually the lowest one) of some hamiltonian matrix 
the elements of which being implicitly smooth functions of the interatomic 
distances. Removing the translational/rotational degrees of freedom, one obtains 
the configuration space (CS, defined precisely in the following section) in which 
the main properties of a potential function are primarily summarized in terms of 
its critical points. 

At a critical point on CS, the potential function is at a stationary value. The 
behavior of the potential in a neighborhood of such a point is usually dominated 
by the second-order terms of a Taylor expansion, i.e. the hessian matrix, the 
signs of the eigenvalues of which usually characterize the nature of the critical 
point. Defining the index of a critical point as the number of strictly negative 
eigenvalues of the hessian, one gets a brief characterization of any kind of critical 
point. Chemically stable species correspond to minima (critical points with index 
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zero) while transition structures correspond to saddle points (critical points with 
index one). The potential function turns out to be smooth almost everywhere 
and usually exhibits non degenerate critical values (i.e. no zero eigenvalues of the 
hessian at a critical point). As a consequence, a potential function in chemistry 
usually belongs to the generic class of the so-called Morse functions and the 
Morse theory [2] does apply to large parts of the configuration space. More 
precisely let f :  Nn__+ N be a Morse function on a simply connected domain X of 
~'~ with (possibly empty) boundary B such that 

(i) f is bounded below, 
(ii) for each x in B, the gradient vector points out of X, 

then the following inequalities hold: 

Mk>~fik  ( k = 0  . . . . .  n) 

and 

M~ -- M~ l + " " " + ( - - 1 ) k M o  >/ f i k  - -  f i k _  l + " " " + ( - - 1 ) k f i o  

where M k is the number of critical points with index k of the function f in J( and 
fik is the Betti number of rank k of J(. Moreover the equality holds when k 
reaches n, the dimension of X. The Betti numbers are topological invariants of 
X and have been computed for usual topological spaces [3, 4] such as the 
n-dimensional balls ~n, spheres ~n ,  torus H n or direct products of such spaces. 
A condition on boundary, more precise than (ii), can be found in [5]. 

These relations can be used as diagnosis for completeness of the set of critical 
points at any stage of a numerical prospection restricted to any kind of domain 
X where the Morse theory holds. If any of these relations is violated, then there 
must exist some additional critical points with definite indices in X. Combining 
interrelated subdomains provided by symmetry constrained cross-sections, one 
obtains a severe check on the coherence in the course of a numerical approach 
to a potential function in chemistry as pointed out earlier by P. Mezey [6] and 
one of us [7]. Actual applications can be found elsewhere, either in ~n  [8] or in 
H ~ [9]. For  a recent survey of topological methods in chemistry including Morse 
theory in relation to potential surfaces, see [10]. However, one must keep in mind 
that a potential function in chemistry does not fall automatically into the field 
covered by the original Morse theory. Five difficulties can be pointed out. They 
are: 

1. asymptotic behavior not satisfying condition (ii), as observed with more or 
less repulsive potentials. 
2. first order discontinuity such as conical intersections on adiabatic potentials, 
3. appearance of degenerate critical values (vanishing eigenvalues of the hes- 
sian), 
4. pathological configurations where at least two atoms are superimposed, 
5. appearance of degenerate critical orbits coming from the rotational equiva- 
lences. 

The first three difficulties can be circumvented by using standard mathemat- 
ical techniques (penalization, regularization, bifurcation) as proposed in [10, 15, 
16] and summarized in appendix 1. The result is the formal and numerical 
replacement of the original potential V by a morsified one with smooth proper- 
ties everywhere. In so doing, chemical significances of V are not altered due to 
the one-to-one correspondence between the topological properties of both origi- 
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nal and morsified functions. Following P. Mezey [10, 11], the difficulty (4) may 
usually be circumvented by a smoothing of the potential function in the vicinity 
of D~xcl., the set of pathological configurations. 

The aim of this work is to write the Morse inequalities for a morsified 
potential function on the configuration space as a whole. We first tried the 
compacification method suggested by P. Mezey, but we encountered major 
difficulties in the four body cases. Details are given in appendix 2 where are 
quoted some obstacles at the compacification of the whole configuration space of 
a N-body problem (N > 3). 

In the course of the following sections, the difficulty (4) will be overcome in 
the spirit of [12] and using the behavior of a chemical potential in the vicinity of 
such configurations. We will take advantage from recent progress about the central 
configurations of the N-body problem via equivariant Morse theory [13, 14] to 
solve the difficulty (5). The approach also yields Morse inequalities on the restric- 
tions of the configuration space to either the planar or the collinear configurations. 

2. Morse  theory on the configuration space as a whole 

Let V(ql . . . .  , qn) be a Morsified potential function of a set of N nuclei with 
cartesian coordinates qi and masses #i. The configuration space (CS) is derived 
from ~n in the following way: 

(a) omission (by excision) of Dexol., the set of configurations with two or more 
superimposed nuclei, 
(b) elimination (by mapping) of the 3 translational degrees of freedom. 
(c) elimination (by quotient) of the 2 or 3 rotational degrees of freedom 

Dij={(q, . . . . .  q n ) ~ 3 N ,  i # j : q , = q i } ,  Dexcl. = U Dij 
i < j  

¢ _ #iq~=O =M,  M \ S O ( 3 ) = C S  \ excl., 
i = 1  

Here M comes from the mapping which translates the center of mass at the 
origin and SO(3) is the rotation group in N3 (not rotation-reflexion). When 
omitting DexcL, the difficulty (4) is circumvented but M is not compact. This is 
not an obstacle because the critical points of V are bounded away from the set 
Dexcl.: from the repulsion between nuclei, namely V(q )~  oo as q ~ 0  (see also 
[ 11]). The space M turns out to be a 3N - 3 dimensional manifold. However M 
is no longer homotypically equivalent to N 3N 3 due to the excision of Dexd. and 
relevant Betti numbers are needed to pursue. Fortunately, such "configuration 
spaces" have been studied [12] and the homotopy of M is given by 

N - - I  
P M ( t ) = ( l + t 2 ) ( l + 2 t 2 ) ' " ( l + ( N - 1 ) t 2 ) =  ~ fi}N)t2i (1) 

i = 0  

where PM (t) is the Poincar6 polynomial in t and/~ ~N) are  the Betti numbers of M. 
The set of critical points of V on M defines two or three-dimensional critical 

orbits due to the rotational degrees of freedom. These orbits reduce to isolated 
critical points on CS, the quotient space of M by the group SO(3). Unfortu- 
nately, SO(3) does not act freely 1 on M and CS fails to be a manifold, a 

1 A group  G acts freely on a space X if  one has: Vx e X, Vg ~ G, g :~ 1 ~ g x  ~ x .  



300 D .  L i o t a r d  a n d  M .  R 6 r a t  

necessary condition for the original Morse theory to apply. However the 
equivariant form of the Morse theory does apply on M, but the cohomology of 
the critical orbits needs to be explicited. A similar problem has been recently 
studied with the gravity law being the N body potential function [13]. The 
equivariant form of the Morse theory takes the form: 

PM(t) 
t;~iPj(t) - i ~  7 ~- (1 + t)Qv(t) (2) 

j = l  

where the sum on the left hand side runs over the critical orbits of V on M, 2j 
is the index of the hessian restricted on the space transverse to the orbit j and 
P1 (t) is a series in t which represents the equivariant cohomology of  the orbit j 
in M. PM(t) is the Poincar6 polynomial of M, (1 - t  4) arises from the action of  
SO(3) on M and Qv(t) is a series with non-negative coefficients. In the case of 
non-degenerate orbits (as guaranteed by morsification), the series Pj(t) are found 
to be: 

• Pj(t) = 1 for nonlinear configurations 

• Pj(t) = 1/(1 - t  2) for collinear configurations. 

Thus introducing Mn, m,, the numbers of critical points with index n for 
nonlinear and collinear configurations, respectively, the Morse theory from Eqs. 
(1) and (2) takes the equivariant form on CS: 

3 N - - 6  3 N - - 5  Zj=o mjt j ( l + 2 t 2 ) ' " ( l + ( N - 1 ) t  2) 
M r +  t2 ~- ( l+t )Qv( t )  (3) 

i = 0  1 - -  1 - - t  2 

From Eq. (3), equating the coefficients of the same powers of t and considering 
that Qv(t) has only nonnegative coefficients, one gets explicitly the Morse 
inequalities on CS, the whole configuration space: 

34o+ 

M1 - M 0 +  

M 2 -  M I  + M o  q- 

M~-  M~ + M 1 -  Mo + 

M 4 -  M3 + M 2 -  M~ + Mo + 

mo ~> 

m 1 - - m  0 

m2 - ml + 2mo/> 

m3 - -  m2 + 2ml - 2mo ~> 

m 4 - -  m 3 + 2m2 -- 2ml + 3m0 i> 

and 

BV ) 

-B(#)  

B~ N) + 2B(o N) 

_ B~N) _ 2B(o N) 

B(N).  2B(N) + 3B(o N) 2 ~ I 

( - -  l )  (3N - 5)m3N - 5 + " " " -I- m 2 - -  m l  + m o  - (4) 
2 

The B }  N) numbers are connected to the Betti numbers by the relation 
i 

~ V  ) = Z (-1)(~-J~/~} N) 
j - O  

and one have Eq. (4a): 

• for N = 3: B(0 3) = 1, B ~  3) = 2 

• for N ~ > 3 : B ( 0  u ) = l , . . . , B }  N ) = B !  N - 1 ) + ( N - 1 ) B } N 7 1 ) , . . . , B ( f f ! 2 =  
( N -  1)B(NU_ 31) 

When exercising Eqs. (3) or (4), care is to be taken in determining the index 
of a critical point due to the "local dimension" of CS ( 3 N - 5  for collinear 

N! 
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configurations, 3N - 6 otherwise). Note also that a spatial critical configuration 
will count twice (mirror image) due to the reflexion not having been taken into 
account when defining CS as the quotient of M by SO(3), rather than by 0(3). 
Symmetry-related configurations also have to be enumerated as illustrated in the 
following sections or elsewhere [5, 13-16]. 

3. Morse theory restricted to planar and collinear configurations 

When restricting the study of some potential V to the linear plus planar 
configurations of a set of N nuclei, the planar configuration subspace (CSP) is 
everywhere 2N - 3 dimensional. Excising Dexcl. and contracting the translation as 
before, then taking advantage from the fact that the relevant rotational group S ~ 
acts freely, Palmore [14] derives the equivariant form of the Morse theory in this 
case as: 

2 N  -- 3 2 N -  3 N 2 

2 ~. M ; t i +  ~. mjtJ= ~ B~N)t~+(l+t)Q'v(t)  (5) 
i - - 0  , / = 0  n - - 0  

where M~,, rn~ are the number of planar critical configurations with index n on 
CSP (nonlinear and collinear resp.), B(~ N) as defined in Eq. (4a) and Q'v(t) has 
nonnegative coefficients. The factor 2 in the left hand side accounts for the 
reflexion of a nonlinear configuration with respect to a straight line [ 17]. Morse 
inequalities follow on CSP for k from 0 to 2 N -  3: 

2(M; - M;  1 -~- ' ' " -~- ( - -  1)kM;) + rn~ -- m~_l + ' ' "  + ( -- 1)km'o 

>1 B(k N) -- B~N) I + . "  + ( -- 1)kB(of) (6) 

where B~ N~ = 0 for k > N - 2 and the equality holds for k = 2N - 3. 
The case of collinear configurations (configuration subspaces CSL, N -  1 

dimensional) falls into the field of the Morse theory in its original form with 
Betti numbers fl0 = 1, fii = 0 i > 0. There are N!/2 such subspaces imbedded in 
either CSP or CS, depending on the ordering of the labeled N nuclei along a 
straight line. For  each of these subspaces, the Morse inequalities are for k from 
0 t o N - l :  

" m" mk- -  k - ,+ ' ' '+(- -1)krn '~>>t(  1) k (7) 

where m~ stands for the number of critical points of index k for the restriction 
of V on the selected CSL and the equality holds for k = N - 1. 

The Equations (7) do not subsume in Eq. (6) which in turn, do not subsume 
in Eq. (4). However, a given critical configuration will appear at various places 
in these relations, depending on the partitioning of its unstable manifold (space 
spanned by the normal modes with imaginary frequencies) among the collinear 
planar and out-of-plane unstable modes. For  example a collinear configuration 
with p collinear unstable modes and 2q other unstable modes in CS will account 
for mp+2q in Eq. (4), rn'p+q in Eq. (6) and mp in Eq. (7). This reflects at the 
chemical level the properties of the flow of the gradient field issuing from some 
scalar and smooth potential function, i.e. the main foundations of both Morse 
and Catastrophe theories [2, 5, 18]. 

The following sections illustrate these main theorems in the case of Mg + or 
Mg, ++ clusters in their fundamental doublet or singlet states. The potential 
functions are derived from a non empirical model hamiltonian [19] fully invari- 
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ant with respect to any permutation among equivalent atoms and exhibiting various 
kinds of conical intersections and predissociative behaviors. Chemical intuition is 
meaningless for localisation of critical points with such fluxional systems. The 
algorithmic package available from AMPAC, version 2.1 [20] including the 
CHAIN method [21] and enlarged with simulated annealing strategies [22] to locate 
critical points of any index has been extensively used after implementation of the 
morsified potential function and its analytical molecular gradient. 

4. 3-body cases 

The "reduced configuration space" (RCS) of systems of 3 atoms can be spanned 
by the 3 Pekeris coordinates [23]. The RCS does not reflect the topology of CS, 
but the original Morse theory holds in RCS at the expense of raising the energy 
to a fix, constant, value at the boundary [10]. The following examples illustrate 
the difference between the two approaches in this case. 

4,1. Cluster Mg~- 

The cluster in its doublet ground state is a stable species with no predissociative 
behavior. However the potential needs morsification due to D3h configurations 
(Jahn-Teller cusp) accounting for one pseudo critical point with index 2. Other 
critical points (Table 1) are the 3 equivalent Do~h configurations (minima) and 
the 3 equivalent C2~ saddles. Thus on CS we have 

mo = 3, ml = 0, me = 0, m 3 = 0, m 4 = 0 

Mo=O, M~=3,  3//2=1, M3=O 

Table 1. Critical configurations of 3-atoms clusters. Potential functions from [19]. The label gives the 
local point group of symmetry, a "*"  means morsification of  a conical intersection, a " P "  is for 
morsification of  a dissociative channel. The energy of  3 neutral atoms is taken as reference. 
Geometries are the interatomic distances, most  symmetric appearing first. The symmetry number  is 
the number  of  equivalent but  distinguishable configuration in CS. The index is for CS and leads to 
those in CSP or CSL by subtracting from it the relevant number  of  "frozen" unstable modes. 

Cluster Label Energy Geometry (A) Symmetry Index Unstable 
(kcal/mol) number  modes 

mg~ 

M g f  + 

D~h 132.71 3.062 3 0 
D3h ( * ) 142.76 1.925 1 2 E '  
C2~ 139.83 4.560, 2.995 3 1 B 1 

D~o h 372.82 2.936 3 0 
C ~  378.07 5.687, 3.132 6 3 X + , / 7  
C ~ ( P )  375.69 oo, 2.992 6 2 /7 
D3j~( * ) 387.13 3.357 1 2 E" 
D3h ( * ) 399.45 5.335 1 3 A' ,  E '  
D3h(P, * ) 399.17 oe 1 2 E '  
C2~(P ) 369.10 0% 2.971 3 0 
C s 377.19 3.000, 4.184, 6.271 6 1 A '  
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A 3-body configuration is necessarily planar and the same critical configurations 
appear on CSP, with the same indices in this case. Confining oneself to the linear 
configurations, one has on each of the 3!/2 CSL: m0 = 1. The set of relations (4), 
(6), (7) is satisfied. In RCS, the original Morse theory is satisfied too, taking 

m 0 = 3 ,  M1=3,  m 2 = l  

due to the linear configurations which are stable with respect to bending. 

4.2. Cluster Mg f + 

This doubly charged ion does have stable forms but higher in energy than 
various channels leading to dissociated singly charged entities. Morsification 
regularizes the Jahn-Teller cusp (D3h configurations) and converts long range 
repulsive valleys and ridges into ordinary critical points. The critical set (Table 
1) can be classified in three subsets. Bounded subset: 3 equivalent D~h minima, 
6 equivalent Cs scalene triangle (saddle) and 1 D3h (index due to the Jahn-Teller 
cusp). Predissociative subset: 1 D3h (index 3), 3 equivalent C ~  (index 3 of which 
includes degenerate nonlinear unstable mode). Dissociative subset: 3C2~ isosceles 
triangle (minima) and 1 D3h form (index 2) where both the regularization of the 
Jahn-Teller cusp and the penalization function are active. Collecting on CS: 

m0=3, m~=0, m2--6, rn3=6, m4=0 

M0=3,  M1=6,  M2=2,  M3=1  

Nonlinear forms account similarly on CSP, but the nonlinear instability of the 
predissociated and dissociated Coo~ configurations leads to 

m~=3,  m~=6,  m ~ = 6  

and the equivariant Morse relations Eqs. (3) and (5) are both satisfied. Note that 
in this case the inequalities Eq. (4) are less restrictive than of Eq. (6). Relations 
(7) on CSL are satisfied with m~ = 2 (D~h + Coov dissociated) and m'~ = 1. It is 
no longer possible to analyse the entire set of critical points in terms of the 
original Morse inequalities in RCS. However by compacifying the CS as 
proposed in [10] (see also appendix 2), one gets: 

M0--6, M1=6,  342=2, M 3 = l  

The original Morse theory holds but the two C ~  configurations must not be 
taken into account because they are unstable with respect to bending. 

5. Applications to 4-body cases 

With the increase in size, visual control on CS as a whole becomes impracticable. 
However, symmetry-constrained cross-sections become of major interest. Some 
critical point with an index of high value being found and playing a central role, 
it is also very efficient to look at the other critical points surrounding the central 
one. The original Morse theory applies on the manifold (unstable manifold) 
spanned by the gradient trajectories descending from the central point. This 
provides an efficient strategy for prospection on the potential [7, 8]. Controls of 
topological consistency follow on larger and larger cross-sections of CS. Of 
course the strategy applies in turn on CSP and CSL. 
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5.1. Cluster M g  + 

Like M g [  cluster, M g 2  is a stable species. The threefold crossing at T d 
configurations and the issuing twofold conical intersections need morsification 
(see [16] for a generic study of  such structures). The entire set o f  critical points 
belongs to the unstable manifold o f  a Td pseudo-critical point. This illustrates 
the decisive importance o f  critical points o f  high indices in the main organizat ion 
o f  potential surfaces. Results are summarized in Table 2, except a local set o f  4 
connected critical points, with very closed geometries and energies, which can be 

[~(4,2,2) collapsed onto  no critical point  by the contract ion method [5, 18]: one ,~2~ 
c~(4,2.2) (index 1), two equivalent C(~ 4) (index (conical intersection, index 3), one ,~2~ 

2), with energies 136 .47+0 .14kca l /mo l .  Most  o f  the critical points lie in 
either the C2 or C~ (~) symmetry-constrained cross-sections o f  the unstable mani-  
fold o f  T a. They are always stable with respect to the extensive coordinates 
(hyper  radius), thus allowing 3-D representations (Figs. 1 and 2) after removal  
o f  this contractible degree o f  freedom. Original Morse theory applies on these 

422 
(D2h) Cl, 

t l  

I I 
r / .  

(D4h) Co ~ C3(Td) 

/ 
e 2 

~ C1 (C~ °°) 

Co (D4h) 

Fig. 1. C 2 cross-section of the unstable manifold of a T a configuration for Mg + cluster. At the 
origin, one finds the T a (Jahn-Teller) configuration with pseudo-index 3 in this cross-section. The 
horizontal plane, spanned by the E modes, is also the D 2 cross-section embedding the 3 D2a 
cross-sections which correlate with planar configurations D4h. The proper T 2 mode spans the vertical 
axis such that the vertical plane (e j, t~ ) is the cross-section of symmetry ~2~t'(2'2'°) which correlates with 
planar configurations D~ 4'°,°). The unstable manifold propagates also up to C~, ,°,°) (planar) and D~h 
(linear) configurations. The conical intersections (solid circles) due to Jahn-Teller crossing at T~ 
point are either one-dimensional (right-half axis e~ ) or 2-D (cone around left-half axis e I ). The entire 
figure is of C2v symmetry and for completeness requires reflexions with respect to horizontal D 2 plane 
and vertical ~2~r'(2'2'°) plane. The cylinder is for visual convenience. Critical points are labeled as in 
Table 2. 
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t2+t G c2"~' c~ c~ 

. ~ T d  ~ tl 

e, *"'~C~ D2d 

Fig. 2. C(s 2) cross-section of  the unstable manifold of  a T a configuration for Mg + cluster. The 
horizontal plane is the ~2vt~(2'2"°) cross-section (vertical plane in Fig. 1). The vertical axis is the proper 
T 2 mode which, in conjunction with t l, spans the C3v cross-section which correlates with D3h. 
Conical intersections (solid circles) are centered around the e 1 axis: 1-D on the left, 2-D on the right. 
The horizontal plane acts as a reflexion plane for completeness. The parallelepiped is for visual 
convenience. Other notations as in Fig. 1 

sub-manifolds with the h o m o t o p y  of  ~ 3  and actual counts:  

M 0 = 7, M1 = 8, M 2 = 3, M 3 = 1 o n  C 2 

Mo = 4, M 1 = 6, M2 = 4, M3 = 1 on C(~ 2~ 

All the planar  critical configurations have only a stable out-of-plane mode.  
Scanning Table 2, we collect on CSP: 

M ; = M o = 7 ,  M ' l = M 1 = 3 6 ,  M ; = M 2 = 2 4 ,  m ; = m 0 = 1 2  

Table 2. Critical points of  Mg2- cluster. Col. 1, the figures in parentheses give the number of atoms 
located on an element of  symmetry: D2h(O, 0, 0-), C2v((Tv, ~v, (72). Other notations as in Table 1. The 
last two columns give the index of  the critical points when restricted into C 2 (Fig. 1) and C~ 2) (Fig. 
2) cross-sections issuing from Td 

Mgg- Energy Symmetry Index Unstable C 2 C~ 2) 
Label (kcal/mol) number modes 

Linear 
D~oh 124.83 12 0 
Planar 
04h 127.43 3 0 
D3h 124.67 4 0 

(4,2,2) 133.90 6 2 2h 
D(24'2'2)( * ) 134.56 6 2 
C(4,2,2) 127.89 12 1 2v 
C(4,o,o) 128.66 12 2 2v 
C~ 4) 127.78 24 1 
Spatial 
Td( * ) 139.68 2 5 
C3v ( * ) 137.78 8 4 
D2d ( * ) 138.18 6 4 
C~ 2) 137.10 24 3 

Blg~ B2u 
hg, B2, 
A1 
Al, B1 
A' 

E, T2 
2E 
B~, B2, E 
A', 2A" 

0 
0 
O o r l  
1 o r 2  
1 
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and inequalities of Eq. (6) with B0 = 1, B1 = 5, B2 = 6 are satisfied. Taking into 
account the non-planar critical points, one gets 

M3=24,  M4=14,  M 5 = 2  

which in turn give for inequalities (4) on CS: 

7 +  

3 6 - 7 +  

2 4 - 3 6 + 7 +  

2 4 -  24 + 3 6 -  7 +  

1 4 - 2 4 + 2 4 - 3 6 + 7 +  

2 - 1 4 + 2 4 - 2 4 + 3 6 - 7 +  

1 2 = 1 9 >  1 

0 - 1 2 = 1 7 ~  - 1  

0 - 0 + 2 x 1 2 = 1 9 ~  7 

0 - 0 + 0 - 2 x 1 2 = 5 ~  - 7  

0 - 0 + 0 - 0 + 3 x 1 2 = 2 1 ~  19 

0 - 0 + 0 - 0 + 0 - 3 x 1 2 = - 1 9 )  - 1 9  

5.2. Cluster Mg~- + 

This species accumulates the difficulties of both MgJ- + and Mg + clusters. This 
hyper-radius is not contractible due to predissociative behavior. Conical intersec- 
tions not only propagate from Ta, but also are encountered in various planar 
forms. With respect to previous clusters, the increase in the number of critical 
points is formidable, some of them being of low symmetry (or none). However, 
simulated annealing methods turn out to be very fruitful in the location of 
critical points of any index, with or without symmetry constraints. Driving the 
search as proposed at the beginning of this section, there are no difficulties in 
locating the 921 critical points of the singlet ground state of this cluster (Table 
3). Morse theory is satisfied not only on CSL, CSP and CS but also on each of 
the symmetry-constrained cross-sections of the unstable manifold of critical 
points with major symmetry (Td, Dr,). 

Contrary to previous clusters, most of linear configurations are unstable with 
respect to bending. The role of the penalization function raising up at large 
values of the total inertia is illustrated on CSL which is three dimensional 
(Fig. 3). 

t~(4,0,o) The D~h, D4h and aJ/)(4'0'0)2h cross-sections are embedded in the ~-~2v one, 
spanned by three internal coordinates (Fig. 4). Two coordinates are bond lengths 
in nature, the third being angular and periodic. Selecting from Table 3 the 
critical points with O4h and D(2~ '°'°~ symmetry, one builds up a 2-D cross-section. 
The relevant D~h critical points give another one. Then collecting in turn the 
C(4,0.o~ critical points and continuing until the period of the angular variable is 2v 
reached, and global count in one period takes the form: 

M o = 6: 2D4h + 4D~4'°'°)(P) 

M1 = 12: 4D(24; °'°) + 8Dooh(P: A, B, C, D) 
Ag'~(4,0,0) M 2 = 8: 2D4h(P ) + 2Dooh(P: E) + ~"--'2v 

M 3 = 2: 2D4h 

in accordance with Morse theory on the torus (Betti numbers flo = 1, fil = 1, 
f12 = 0 [3, 4]). 
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Mg 2 + Energy Symmetry Index 
Label (kcal/mol) number 

CS CSP CSL 

Unstable modes 

Linear 

O~h: 
A(P) 
B(P) 
C 
D(P) 
E 
C ~  : 
(p) 
(P) 

321.43 
361.16 
367.31 
368.86 
368.91 

334A4 
344.93 

12 
12 
12 
12 
12 

24 
24 

4 2 0 Fig, 17~ 
5 3 1 S~ + , lIg, Hu 
4 3 2 S + , Z + , He, 
2 2 2 X + , S  + 
3 3 3 2S + , Z + 

2 1 0 17 
3 2 1 S+,11 

Table 3b 

M g 4  + 
Label 

Energy 
(kcal/mol) 

Symmetry 
number 

Index 

CS CSP CSL 

Unstable modes 

Planar 

D4h : 

(e) 

D3h : 

(P) 

D(2'~2,2) : 
(P) 

(*) 
D ( 4 , o , o ) .  

2 h  - 

(P) 

c2,, : 

C(4,o,o). 2 v  . 

C(4,2,2). 2 v  • 

(e) 
(e) 
(P) 
(P) 
(P, *) 
(P, *) 
(P) 
(*) 

342.84 
377.45 
382.70 

347.55 
377.42 
380.77 

358.11 
372.31 
378.15 
378.25 

318.77 
344.25 

367.30 

358.56 

319.93 
332.24 
338.82 
340.40 
342.49 
342.63 
344.22 
355.67 

12 

12 

12 
12 
12 
12 
12 
12 
12 
12 

0 0 
4 4 
5 5 

0 0 
2 2 
5 5 

2 1 
4 4 
4 4 
5 5 

Big, B2g, E,  
Alg, Big, B2g, Eu 

E ~ 
A ] , 2 E '  

Blu~ B2u 
Ag, Big , B2u, B3u 
Ag, Big , B2~, B3u 
2Ag, Big, B2u, B3, 

Blu 
Ag 

Ag, B~ 

2AI,B1 

BI, B2 

B 1 , B 2  

B1, B2 
A1, Bx, B2 
A1, 2Bt, B2 
A1 
A1, B1 
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Mg ~ + Energy 
Label (kcal/mol) 

Symmetry Index Unstable modes 
number  

CS CSP CSL 

(*) 

C~4): 

356.88 12 1 1 A 1 
357.59 12 2 2 A 1 , B 1 
358.33 12 2 2 A1, B 1 
359.21 12 3 3 2A I , B 1 
369.01 12 3 3 A1,2B a 
369.42 12 4 4 2A1,2B 1 
380.40 12 4 4 2AI, 2B I 
380.41 12 4 4 2A1,2B 1 

355.58 24 1 1 A '  
358.04 24 2 2 2A'  
364.46 24 2 2 2A'  
367.05 24 4 3 3A',  A" 

Table 3(a-c) .  Critical points of  Mg + + cluster. The capital letters in col. 1 refer to symbols in Figs. 
3 and 4. Notations as in Table 2; Cs(a ) indicates the number  of  a toms of the ~ plane. The various 
indices refer to configuration spaces as defined in text 

Mg + + Energy Symmetry Index Unstable 
Label (kcal/mol) number  

CS CSP CSL 

Spatial 
re: 
(*) 362.92 2 2 
(P, *) 381.59 2 3 
(*) 391.93 2 6 

C3v : 
(P, *) 341.99 8 4 
(*) 365.64 8 5 
(*) 369.83 8 5 

Dzd: 
(P) 318.73 6 0 
C~2): 

C~: 
338.75 24 2 

345,72 48 1 
352.08 48 2 
359.26 48 2 
359.37 48 3 
366.51 48 3 
374.29 48 3 
375.83 48 3 
381.93 48 5 

E 
T2 
A1,E,  T2 

2E 
Al ,  2E 
AI,  2E 

A' ,  A" 
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r3- q 

, q,r2. rs. 

C~ C ~v 

C•D•h (B) 

rl + r2*r3 c{ c ~  

C(~ C=v 

) 
r l+r3-2r 2 

¢ ~  C=v 

Fig. 3. Linear critical set of 
M g g  + cluster (singlet ground 
state). The D~h cross-section 
is the horizontal plane, acting 
also as a reflexion plane of 
the entire figure. The penalty 
function suddenly rises up at 
large values of the extensive 
coordinate and converts 
dissociative channeIs and 
ridges into ordinary critical 
points (bottom vertical plane). 
Other notations in accordance 
with Table 3. 

01Dmhc 01  DIn, c 

0 2  D ~  E 

C 0  D4h 

C D 4oo 

r /  
C2 c~ °° L / . - - ' " ~ i ~  c2 c~ ~° 

r' o° 
c,o O.o 1 /  

~2 D~  E 

;P D~h o 

p 4oo C o  D2h 

Fig. 4. Half-period of a ~2~t~(4'°'°) cross-section of M g  + + cluster. The Alg , B2u , E ,  (periodic) modes 
of the central D4h configuration (index 3) span the entire figure. Penalization is reached at large 
values of the Alg mode (bottom horizontal plane). The D(2~ '°,°) cross-section embedding the D4/, 
one lies on the centered vertical plane. The left vertical plane is the D~h cross-section also shown 
in Fig. 3. The right vertical plane is equivalent to the left one, differing only by permutation 
among equivalent nuclei 

There  are six such dis t inguishable  ',J2v~(4'°'°) cross-sect ions on CSP, shar ing  two 
by two the D4h and  ~n(4'°'°)2h cri t ical  po in ts  (recal l  tha t  on CSP, non l inear  
conf igura t ions  are doub led  in count ,  the l inear  being not).  A similar  p rope r ty  has 
been observed  elsewhere [16]: a given cri t ical  point ,  shared between equivalent  
cross-sections,  d is t r ibutes  its modes  be longing  to dis t inct  i r reducible  representa-  
t ions in a non  symmetr ic  way. However  the overal l  symmet ry  is kept ,  due to 
ano the r  equivalent  cri t ical  po in t  shared in the oppos i te  way. 
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6. Conclusion 

The knowledge of the set of critical points of a potential function gives 
information about its intrinsic complexity. Of course complexity tends to in- 
crease with N, the number of atoms, as indicated by equivariant Morse theory 
(the number of critical point grows usually faster than N! [13]). However, for a 
given value of N, there exist more or less simple surfaces too. For example, let 
us take as a criterion the distribution of the energies of the critical points with a 
given index. These distributions can in turn be summarized by their mean values 
and standard deviations (Table 4). 

The surface of M g  + is one of the simplest possible with no overlap in the 
distributions of various indices. A greater complexity is apparent for M g ~  + 

from the overlap between distributions of indices 1 and 2. In spite of the increase 
in the number of critical points, the surface of M g  + is simple. On the other 
hand, the surface of M g  + + is a complicated one, with strong overlap between 
the distribution of non-contiguous indices. 

Let us suppose that some properties are needed which involve trajectories on 
these surfaces (either from molecular dynamics or Metropolis scheme). A 
problem is to build up a good sampling of the configuration space. Of crucial 
importance to provide answers is the branching tree of connected components 
i.e. the energetic levels where separated basins collapse. The levels where "holes" 
in a connected component disappear are also useful. Such information is roughly 
summarized in the energetic distributions of critical points with specified index as 
illustrated in Table 4. 

Global analysis of a potential energy function is of decisive importance for 
the understanding at least qualitative - of a potential hypersurface in chem- 
istry [10]. The location of critical points requires an efficient arsenal of optimiza- 
tions methods, including both local and non-local algorithms, hessian matrix 
analysis and integration of gradient trajectories [20-22]. However, faced with the 

Table 4. Mean value E and standard deviation a of the energies (kcal/mol) of the critical points of 
some clusters of Mgn in their ground states. M is the number of critical points for a given index 

Index: 0 1 2 3 4 5 6 

Mg~ 
M 3 3 1 
E 132.71 139.83 142.76 
O "  - -  - -  - -  

M g f  + 
M 6 6 8 7 
E 370.96 377.19 380.05 381.12 
cr 1.89 - -  8.13 7.48 

Mg 2- 
M 19 36 24 24 
E 125.21 127.82 131.44 137.10 
a 0.96 0.11 2.79 - -  

Mg4 -+ 
M 25 108 300 278 
E 332.72 347.41 352.36 364.99 

9.73 8.56 11.85 9.20 

14 2 
137.95 139.68 

0.19 

119 89 
362.35 376.30 

18.36 8.03 

2 
391.93 



Equivariant Morse theory of the N-body problem 311 

complexity of potential functions, a crude use of these methods will usually lead 
to sparse information, with no topological consistency. 

Fortunately, Morse theory.provides an elegant and powerful framework for 
rationalization of numerical results. In previous works [7 11, 15, 16] this was 
done on various subsets of the configuration space and in conjunction with 
symmetry. The present work enlarges the field of applicability of Morse theory 
to the configuration space as a whole and its restrictions to planar and linear 
cases. The various forms of Morse theory thus provide very severe tests for 
topological consistency, in a way which evolves from semi-local analysis to 
global analysis. 

When exercising such an analysis, several pitfalls can be encountered due to 
the potential arising from the diagonalization of some hamiltonian matrix. 
Systematizing the use of penalty function [15], generic perturbation [16] or 
Catastrophe theory [5, 18] we propose a rational way to achieve morsification of 
potential function, without loss of the main chemical significance attached to 
these surfaces. 

7. Appendices 

1. Morsification o f  potential functions 

When a potential function shows a repulsive behavior at large distances, Morse 
theory does not apply since condition (ii) is not satisfied whatever boundary 
chosen. The "Palais-Smale" condition (see [5], and [10] p. 78) is restored by 
introducing a penalty function at large distances: this converts a repulsive valley 
(ridge) into an ordinary minimum (critical point) [15]. Let some hyperspherical 
coordinates system span CS. The hyper-radius (or equivalently the total inertia 
I of the system) is the only extensive coordinate, thus increasing along any path 
of fragmentation of the system. Therefore a penalty function P converting the 
original potential V into a distorted one W can be defined as: 

I < I  o ~ P = 0  

I>~Io ~ P = k ( I - I o )  3 

W = V + P  

where k is a constant with a positive value and I0 a large enough threshold value 
on the total inertia. The power three ensures differentiability up to second order 
for analytical computation of the hessian everywhere. This penalty function is 
not so elegant as the "carpeted step functions" ([ 10] p. 273) but it is much easier 
for numerical implementation. Critical points of W do exist in the vicinity of the 
border I - I  o, which reflect at finite distance the dissociative behavior of V. 
These critical points have an obvious chemical significance and they account for 
Morse theory ([2] Theorem 1.4, p. 145). 

First-order discontinuities induced by conical intersections or Jahn Teller 
cusps generate pseudo-critical points with pseudo-index as proposed in Ref. [ 16]. 
Let O be the subspace where the eigenstates split in first order and T be the 
complementary subspace. A pseudo-critical point does exist if and only if the 
potential function is at a critical value on T and if its left and right derivatives 
are of opposite signs on O. Then, for the lowest adiabatic eigenstate, the 
pseudo-index is the sum of the index on T plus the dimensionality of O. This 
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regularization can be extended to excited states, with the results depending on 
both the parity of the state and the number of simultaneous crossings. The last 
kind of difficulty comes from degenerate critical points. Mathematically, this is a 
non-generic situation, i.e. rare and unstable under most perturbations. How an 
isolated critical point bifurcates into non degenerate critical points under a given 
perturbation is described in the Catastrophe theory [ 18]. Notwithstanding the 
perturbation, Morse theory applies to each of the reachable generic situations. 
As an example, the two-dimensional "monkey-saddle" case [24] is a catastrophe 
germ D-4 separating three generic situation: (1 minimum, 3 saddles), (2 saddles), 
(1 maximum, 3 saddles). The actual choice does not affect the chemical signifi- 
cance of the potential function. Going further, such conventional perturbations 
apply to subsets of connected critical points using the fold contraction technique. 
This provides a powerful tool either to describe the gross properties of a 
potential function [8] or to reduce the complexity of a local set of Critical points 
as illustrated in this work in the case of Mg4 + . 

2. On the compacification of  configuration spaces (CS) 

In the original work of M. Morse ([2], Theorem 1.1, p. 143), the inequalities are 
derived in a compact manifold. However, the CS is not a compact but it may be 
compacified. P. Mezey [10] actually proposes to convert the CS into a "manifold 
with boundary" (p. 270). Then the potential function is distorted near the 
boundary by raising the energy to a large enough value (p. 289). Finally, the 
boundary is contracted to a single point (p. 286). This completes the compacifi- 
cation and introduces an additional, artificial maximum point. This last step is 
not necessary because Morse theory holds in open sets if the potential function 
satisfy a "Palais-Smale" condition [5]. It actually does by raising the energy 
near the boundary ([2] Theorem 1.2, p. 145). 

In the three-body case, linear configurations lie on the boundary ([10], p. 
272). When raising the energy, linear critical points remain if the bending mode 
is stable, but they disappear if not. Therefore a chemical information is lost in 
some sense. This is disappointing when most of the critical configurations are 
collinear (e.g. CO2). 

The deficiency remains in the four-body case while other obstacles appear. The 
"reduced configuration space" (RCS) is defined as a metric space, of dimension 
3 N - 6 = 6  ([10], p. 26). To build up a manifold with boundary, one has to 
define a simply connected boundary of dimension 5. In order to avoid the 
reflexion properties ([10], p. 219), the set of collinear configurations has to 
belong to this boundary, but its dimension is only 3. The set Dexol. of superim- 
posed nuclei, to be excluded, must also belong to the boundary. However, the set 
Dexd. is not fully included in the set of collinear configurations and some of its 
components are of dimension lower than 5. How to imbedd these various 
boundary sets in a unique boundary, without breaking the RCS into disjoint 
subsets, is an open question. 

Also not evident that rotational equivalences can be eliminated everywhere 
while building up a Riemannian space as defined in [2], chapter V. For example, 
with four atoms A, B, C, D, and six cartesian coordinates (none for A, one for 
B, two for C and three for D, similarly to [10] page 271), the atom D can rotate 
freely around the ABC axis when these first three atoms are in a straight line. 
The problem occurs for planar configurations but not for linear ones. The use of 
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another system of 3 N -  6 independent coordinates displaces the problem but 
does not remove it in the large. P. Mezey ([ 10] chapter V) clearly shows that the 
RCS can be endowed with a metric. We have not been able to prove that it is 
sufficient in the sense of Morse ([2] chapter V). 

The complexity of  the RCS emerges at four atoms. Unfortunately, obstacles 
increase with the number of atoms. For example, a natural (although chemically 
frustrating) boundary in a four-body case may be provided by the set of planar 
configurations. This is no longer true for a system with five atoms where the set 
of  planar configurations is of  dimension 7 versus a RCS of dimension 9. Instead 
of attempting to compacify, another approach is first to solve the problem of 
superimposed nuclei in the ~i~3U space, as done since 1962 [12]. Then one can 
decide to keep linear and planar configurations within the "interesting" part of 
CS in chemistry. At least the problem of rotational equivalences can be entered, 
even if the CS fails to be a manifold, at the expense of  computing once for all 
non-trivial topological invariants, in the spirit of [13]. 
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